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Morphological changes of dendritic spines are strongly

associated with synaptic development and synaptic plasticity,

which underlies learning and memory. These changes are

driven by alterations of F-actin dynamics under the control of

Rho GTPases or by synaptic trafficking and insertion of

glutamate receptors. Understanding the molecular events that

occur during the formation and stabilization of dendritic spines,

and the signaling pathways regulating these processes,

provides insights into the mechanisms of learning and memory.

In this review, we discuss the recent advances on these

postsynaptic signaling pathways, in particular, we discuss the

specific signaling events that couple the cell-surface receptors

to intracellular targets. In addition, we discuss the deregulation

of these signaling pathways and their subsequent impact on

synaptic dysfunction in Alzheimer’s disease.
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Dendritic spines, which are the specialized protrusions on

dendrites where most excitatory synapses reside, receive

and integrate information in the brain [1�]. They are the

sites where ionotropic glutamate receptors (including

both AMPA-type and NMDA-type glutamate receptors)

are concentrated to mediate efficient excitatory synaptic

transmission [2]. Dendritic spines are morphologically

diverse and can be classified as cup-shaped, mushroom,

stubby, thin, or filopodial spines [3]. For example,
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mushroom spines have large heads and thin necks,

whereas stubby spines have large heads and no neck.

The heads of dendritic spines comprise a thickened

postsynaptic density (PSD), which contains scaffold,

cytoskeletal, and motor proteins to support and stabilize

glutamate receptors [4]. While dendritic spines are highly

motile and dynamic, the structural changes of spines are

associated with changes in synaptic efficacy [5]. Indeed,

changes of spine number, size, and morphology, which

are collectively termed structural synaptic plasticity, are

highly correlated with the abundance of PSD and organi-

zation and localization of AMPA-type glutamate recep-

tors (including their abundance, subtypes, and properties)

at the postsynaptic sites [6]. This results in the regulation

of synaptic strength, which is termed functional synaptic

plasticity [7]. The molecular regulation of structural and

functional plasticity can be independent; for example,

overexpression of a nuclear receptor, Nr4a1 (nuclear

receptor subfamily 4, group A, member 1), was recently

shown to result in dendritic spine loss without affecting

the excitatory synapses or synaptic transmission [8].

Nonetheless, in most cases, structural synaptic plasticity

is tightly coupled with functional synaptic plasticity.

Experience-regulated structural synaptic plasticity, spe-

cifically changes in dendritic spine density and shape, is

critical for learning and memory [2]. For instance,

enhanced spine formation is associated with the improved

performance after learning [9]. Motor learning experience

induces the rapid formation of dendritic spines in the

mouse motor cortex [9], and the continuation of the

training task stabilizes the learning-induced spines

[10]. Importantly, repetitive postsynaptic depolarization,

which induces long-term potentiation (LTP), promotes

spine enlargement [11]. In contrast, weakening of synap-

tic connections during long-term depression (LTD)

results in the shrinkage of dendritic spines [12]. The

modulation of synaptic strength involves stepwise

changes of different structural elements of synapses,

including the volumes of presynaptic boutons and post-

synaptic spines, pools of synaptic vesicles, areas of active

zones, and composition of the PSD; these changes are

closely coordinated to ensure efficient neurotransmission

[7]. Two-photon time-lapse imaging, glutamate uncaging,

and electron microscopy studies recently revealed the

dynamic correlation between spine morphological

changes and the composition of subsynaptic structures

in CA1 pyramidal cells in cultured hippocampal slices

(Figure 1). Synaptic activity stimulates the enlargement

of dendritic spines. This is followed by the trafficking of
www.sciencedirect.com
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Structural synaptic plasticity is initiated by the coordinated growth of dendritic spines and increased actin within the dendritic spines. The

formation of stabilized structural and functional synapses requires initial spine growth, followed by an increase of postsynaptic density and

subsequent presynaptic boutons.
structural PSD proteins (i.e., Homer1c) to dendritic spines

along with the subsequent coordinated increase in the

size of presynaptic boutons and PSD, which stabilizes the

enlarged spines and functional synapses [13]. The con-

current increases in the size of spines, presynaptic bou-

tons, and the PSD are critical for synaptic plasticity,

suggesting that dendritic spine morphology plays a crucial

role in synaptic plasticity. In this review, we focus on the

recent advances in the postsynaptic signaling mecha-

nisms that regulate dendritic spine morphology as well

as their deregulation in spine loss and dysfunctions in

Alzheimer’s disease (AD).

Two major postsynaptic mechanisms that underlie spine

enlargement and synapse potentiation are actin remodel-

ing of spines and synaptic insertion of AMPA-type gluta-

mate receptors [2,14]. Dendritic spine morphology is

tightly regulated by the dynamics of F-actin, which is

the major cytoskeletal component of dendritic spines

[15]. During spine enlargement, actin polymerization

and the stable pool of F-actin increase rapidly within

the stimulated spines, which promote the expansion of

spines and anchoring of synaptic proteins in CA1 pyrami-

dal cells of hippocampal slices [11,16]. Indeed, after LTP

induction, the composition of actin-binding proteins

changes in the spines. Cofilin, a key regulator of actin

dynamics, accumulates rapidly in dendritic spines [17�].
Binding of cofilin to F-actin severs actin filaments, which
www.sciencedirect.com 
results in the generation of new barbed ends for additional

actin growth [18]. Cofilin also exerts distinct effects on

actin polymerization in a concentration-dependent man-

ner: at low concentrations, cofilin depolymerizes F-actin

by severing actin filaments, whereas at high concentra-

tions, cofilin enhances F-actin nucleation and assembly

[19]. The high local concentration of cofilin in stimulated

spines suggests that cofilin promotes F-actin nucleation

and polymerization [19]. Moreover, the concentration of

F-actin in the spines leads to spine expansion and

increases the number of docking sites at postsynaptic

sites that capture the newly synthesized proteins [20].

Thus, the new F-actin formed at the enlarged spines may

serve as a synaptic tag for the consolidation of the poten-

tiated state, which is critical for the maintenance of LTP.

The modification of the F-actin cytoskeleton during

dendritic spine plasticity is also regulated by actin reg-

ulators, in particular, the small Rho GTPases including

Rac1, Cdc42, and RhoA [21,22]. During LTP induction,

activation of NMDA-type glutamate receptors mediates

calcium influx into the spines; this is followed by the

transient activation of Ca2+/calmodulin-dependent pro-

tein kinase II (CaMKII), which results in the activation of

Rho GTPase and actin polymerization during spine plas-

ticity [23]. While Rho GTPases serve as major links that

couple extracellular signals to actin dynamics in spines

[24], proteins switching between their active GTP-bound
Current Opinion in Neurobiology 2017, 45:148–155
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and inactive GDP-bound states promotes or suppresses

the polymerization of actin filaments, respectively. Rho

GTPase activation is stimulated by guanine nucleotide

exchange factors (GEFs), whose inactivation is mediated

by GTPase-activating proteins (GAPs) [25��]. Rac1 and

Cdc42 activation are well known to stimulate F-actin

polymerization, which promotes spine formation and

enlargement. RhoA activation results in spine shrinkage

through its effector RhoA kinase and actomyosin reorga-

nization [26]. NMDA receptor activation induces the

phosphorylation and activation of the Rac GEFs such

as Tiam1 and Kalirin-7 in cultured neurons. The resultant

activation of Rac1 mediates spine enlargement [27,28]

through the activation of downstream effectors – the

serine/threonine kinase p21-activated kinase (PAK) and

LIM-kinase-1 (LIMK-1) – which ultimately inhibits the

activity of cofilin [29]. However, it remains unclear how

different Rho GTPases act and how they are coordinated

in activity-dependent spine morphogenesis and the main-

tenance of structural plasticity. The recent findings on the

precise spatiotemporal regulation and dynamic control of

Rho GTPases regulated by specific cell-surface receptors

within spines [30��,31] may provide some hints about how

the compartmentalized Rho GTPases couple the extra-

cellular cues to spine morphology.

BDNF–TrkB signaling
The receptor tyrosine kinase, TrkB, which is activated by

its neurotrophin ligand brain-derived neurotrophic factor

(BDNF), is well known to play crucial roles in activity-

dependent structural plasticity in the hippocampus.

During LTP, BDNF–TrkB signaling shapes structural

plasticity by mediating actin cytoskeletal changes and

synaptic protein reorganization [6,32]. The BDNF-stim-

ulated tyrosine phosphorylation and activation of TrkB

lead to F-actin stabilization and dendritic spine enlarge-

ment by increasing the activity of PAK and inducing the

inhibitory phosphorylation of cofilin, which contribute to

the consolidation of LTP [33]. TrkB is also suggested to

regulate F-actin remodeling through the Rac/RhoA GEF,

Vav, to activate Rac, which is required for the modulation

of activity-dependent synaptic plasticity in cultured

mouse hippocampal slices [34]. In addition to the tyrosine

autophosphorylation of TrkB, the serine phosphorylation

of TrkB by the serine/threonine kinase, cyclin-dependent

kinase 5, (Cdk5) is required for activity-induced spine

remodeling, as demonstrated in the hippocampal slices

derived from TrkB phosphorylation-deficient knockin

mouse [35]. The action is mediated through the enhance-

ment of the interaction between the receptor and Tiam1,

leading to Rac1 activation and the modulation of cofilin

activity. Accordingly, recent sophisticated glutamate

uncaging and imaging studies have revealed the complex

interplay of BDNF–TrkB signaling in the activity-depen-

dent synaptic plasticity in rat and mouse hippocampal

slices at the single-spine scale. Synaptic activity enhances

the local synthesis and release of BDNF from
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postsynaptic dendrites; autocrine BDNF–TrkB signaling

not only triggers the enlargement of the stimulated

spines, but also enhances the crosstalk between the

stimulated spines and their neighboring spines to coordi-

nate structural plasticity among the stimulated and unsti-

mulated neighboring spines [36��] (Figure 2). The acti-

vated BDNF–TrkB signaling within the stimulated

dendritic spines mediates the concurrent activation of

Cdc42 and Rac1 in a distinct spatiotemporal pattern

[30��], whereas synaptic activity rapidly stimulates RhoA

independent of the postsynaptic BDNF–TrkB signaling.

While Cdc42 activity is restricted to the stimulated spines

to promote the synapse-specific plasticity, activated Rac1

together with RhoA signals propagate from the stimulated

spines to the neighboring unstimulated spines to facilitate

the structural plasticity of the neighboring spines. Hence,

elucidating the specific roles of these BDNF–TrkB-

dependent and BDNF–TrkB-independent Rho GTPase

signals and their spatiotemporal coordination will provide

insights into the mechanisms that underlie structural and

functional synaptic plasticity.

Ephrin–Eph signaling
The Eph (erythropoietin-producing hepatocellular) fam-

ily, which comprises EphA and EphB members, is

another family of receptor tyrosine kinases that have

well-established roles in the regulation of dendritic spine

morphology and postsynaptic organization [37]. The

interaction of Ephs with their cell-surface ligands,

ephrins, results in bidirectional signaling. Mice in which

EphBs are deleted exhibit decreased spine and synapse

density in the hippocampus [38]. Activation of EphB

forward signaling promotes spine morphogenesis and

maturation through the coordinated activation of Rac1

and Cdc42. Independent studies demonstrate that EphB2

activation enhances the recruitment and phosphorylation

of the Rac GEFs, Tiam1 and Kalirin-7, resulting in the

activation of Rac1 and subsequent spine formation in

cultured neurons [39,40]. EphB2 also activates Cdc42

through its interaction with the Cdc42 GEF, intersec-

tin-1 [39]. The positive action of EphB on spine morpho-

genesis can also be regulated by a negative signaling

pathway. The spine-promoting activity of EphB is sup-

pressed by its binding with a RhoA GEF, ephexin5 [41].

The ephrinB-dependent activation of EphB causes the

phosphorylation-dependent ubiquitin proteasomal degra-

dation of ephexin5, which subsequently relieves the

inhibition and consequently initiates spine promotion.

The induction of LTP facilitates synaptic potentiation,

which may lead to runaway excitation. To maintain the

stability of neuronal network activity, neurons adopt a

compensatory mechanism, termed homeostatic synaptic

plasticity, in order to prevent runaway excitation [42]. In

particular, prolonged elevation of neuronal activity

decreases synaptic strength, which prevents hyperexcita-

tion. Indeed, chronic neuronal activity decreases synaptic
www.sciencedirect.com
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Figure 2
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Local BDNF–TrkB–Rho GTPase signaling is required for synaptic crosstalk. Synaptic activity stimulates the local synthesis and release of brain-

derived neurotrophic factor (BDNF), which induces the activation of its receptor, TrkB, at the same spines and results in the activation of the Rho

GTPases, Cdc42 and Rac1. Only activated Rac1, together with activated RhoA stimulated by NMDA receptor, will be transported to the

neighboring dendritic spines. The spread of active Rac1 and RhoA into the neighboring spines primes the spines to undergo structural plasticity

even when a weak stimulus is received.
strength through the activation of the Eph family member,

EphA4, in cultured hippocampal neurons [43]. In the

hippocampus, stimulation of postsynaptic EphA4 in the

CA1 pyramidal neurons by its ligand, ephrinA3, which is

expressed in astrocytes also causes dendritic spine retrac-

tion through the activation of RhoA activity andreduces the

number of excitatory synapses [44]. EphA4 activation

enhances the recruitment of Cdk5 to the receptor and

increases Cdk5 activity; in turn, Cdk5 phosphorylates

the RhoA GEF ephexin1 and modulates the actin cyto-

skeleton in hippocampal neurons via increased RhoA activ-

ity [45].

The major outstanding research question about Eph and

spine morphogenesis is how EphBs or EphAs co-regulate

the activities of different GEFs and GAPs and act in

concert to precisely regulate Rho GTPase signaling in

synaptic plasticity. The following examples may provide

some hints (Figure 3). At synapses, EphB interacts with
www.sciencedirect.com 
the Tiam1 (a Rac GEF) and Bcr (a Rac GAP), which have

opposing effects on Rac1 activity [31]. Neurons lacking

Bcr have more and larger spines than the control neurons

Nonetheless, Bcr deletion switches EphB-mediated

spine formation to spine retraction. Given that Bcr1

restricts Rac1 activity and limits the Rac-mediated EphB

internalization induced by ephrinB, the coordinated acti-

vation of Tiam1 and Bcr upon EphB activation enables

the precise regulation of Rac1 activity and spine morphol-

ogy. On the other hand, EphA4 activation stimulates the

Rho GEF ephexin1 and the Rac GAP a2-chimaerin to

activate RhoA and inactivate Rac1, respectively, during

axon guidance [46,47]. A recent study showed that similar

to ephexin1, a2-chimaerin is enriched at postsynaptic

sites and is required for EphA-dependent dendritic spine

retraction in mouse hippocampal slices [45,48]. Over-

expression of a2-chimaerin shrinks dendritic spines, reca-

pitulating the phenotype observed during EphA4 over-

expression. Thus, EphA4 may mediate dendritic spine
Current Opinion in Neurobiology 2017, 45:148–155
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Figure 3
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Distinct ephrin–Eph signaling at excitatory synapses modulates the enlargement or shrinkage of dendritic spines. Ephrin-dependent EphB

stimulates different guanine nucleotide exchange factors (GEFs) at the dendritic spines during spine enlargement. The dynamic control of Rho

GTPase signaling is critical for the structural plasticity. EphA4 is suggested to enhance RhoA activation through the concerted regulation of GEF

and GTPase-activating protein (GAP) activity.
retraction through the coordinated action of ephexin1 and

a2-chimaerin. Therefore, the coordinated regulation of

GEF/GAP complexes is required for the precise control

of synaptic Rho GTPase signaling.

Alpha-melanocyte-stimulating hormone and
melanocortin 4 receptor
Besides receptor tyrosine kinases, G-protein-coupled

receptors (GPCRs) also play important roles in regulating

synaptic morphogenesis and functions. The GPCR, mel-

anocortin 4 receptor (MC4R), is activated by its endoge-

nous ligand alpha-melanocyte-stimulating hormone

(a-MSH), which is generated from the cleavage of pro-

opiomelanocortin (POMC). While melanocortin signaling

is well known to regulate food intake and energy balance,

MC4R is prominently expressed in the postsynaptic

regions of the mouse hippocampus [49]. MC4R activation

by its agonist increases the number of dendritic spines in

cultured hippocampal neurons. Furthermore, MC4R acti-

vation leads to the insertion of AMPA receptors into

synapses and increases AMPA receptor-mediated synap-

tic transmission. While the detailed mechanisms under-

lying the action of MC4R are unclear, MC4R activation

regulates spine morphology and synaptic function via Gs-

adenylyl cyclase-protein kinase A (PKA) signaling.

Indeed, PKA signaling may regulate dendritic spine

morphology by enhancing the phosphorylation-
Current Opinion in Neurobiology 2017, 45:148–155 
dependent incorporation of AMPA receptor into synapses

or through the phosphorylation of various actin regulators

such as Tiam1, WAVE1, and RhoA [49]. We recently

mapped the POMC circuit in the mouse hippocampus

and found that the POMC neurons in the CA3 hippo-

campal region activate MC4R in the CA1 region in

response to synaptic activity [50�]. Furthermore, deletion

of MC4R in the CA1 region of the mouse hippocampus

reduces dendritic spine volume, whereas peripheral

administration of an MC4R agonist enhances structural

and functional synaptic plasticity in the hippocampus.

Spine loss and dysfunction in AD
Abnormal spine morphology and functions are associated

with neurological disorders including autism and AD. AD

is characterized by cognitive decline, and its pathological

hallmarks include beta-amyloid plaques, which mainly

comprise amyloid-beta peptide (Ab) and fibrillary tan-

gles, which are intracellular aggregates of hyperpho-

sphorylated Tau protein. While extensive dendritic spine

loss is observed in AD patients, synapse reduction is the

feature most closely correlated with the decline of mem-

ory and cognition [51,52]. A recent study suggests that the

dendritic spine loss in engram neurons (a specific popu-

lation of neurons that are active during memory encoding)

is associated with the deficits of memory retrieval in early

AD mouse models [53�]. Thus, restoring the dendritic
www.sciencedirect.com
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spines in these neurons may be an effective strategy for

ameliorating the memory loss in early AD.

While the total Ab plaque burden (i.e., insoluble Ab
aggregates) is not associated with memory impairment

in AD, it is believed that the soluble oligomeric form of

Ab is the major agent that triggers dendritic spine loss and

cognitive deficits [54,55]. Ab interacts with a wide range

of cell-surface receptors at synapses, including neuro-

transmitter receptors (e.g., a7 nicotinic acetylcholine

receptors), GPCRs such as metabotropic glutamate recep-

tor (mGluR5) and b2 adrenergic receptors, receptor tyro-

sine kinases including EphB2 and EphA4, prion protein,

the Wnt receptor fizzled, and insulin receptors [56]. In

particular, the action of Ab can be mediated through the

deregulation of the expression levels or activity of Eph

receptors. Ab binds to the extracellular domain of EphB2,

causing the ubiquitin–proteasome-dependent degrada-

tion of the receptor [57]. Accordingly, increasing EphB2

expression in hippocampal neurons reverses the synaptic

deficit in AD mouse models. On the other hand, Ab
administration leads to EphA4 overactivation in cultured

hippocampal neurons. EphA4 activation leads to den-

dritic spine retraction and the proteasomal-dependent

degradation of AMPA receptors [43–45], both of which

are critical factors that contribute to the synaptic deficit in

AD. While EphA4 is a synaptic target of Ab [58], EphA

also decreases the glutamate uptake in astrocytes through

the ephrinA3-mediated reduction of glutamate transpor-

ters in astrocytes [59]. Thus, it would be of interest to

examine whether impaired EphA4–ephrinA3 reverse sig-

naling mediates synaptic deficits in AD through the

accumulation of extracellular glutamate. We previously

demonstrated that chronic elevation of synaptic activity

stimulates EphA4 activation [43]; therefore, it is critical to

determine whether the glutamate overflow deregulates

spine morphology and hence negatively impacts synaptic

functions through EphA4 signaling. It is noteworthy that

blockade of EphA4 rescues the Ab-induced spine defects

and synaptic functions [58,60]. Thus, modulating the

expression or activity of specific Ephs, which are the

cell-surface receptors of Ab [61�], may represent a novel

approach for the treatment of AD.

Other than the receptor tyrosine kinases, GPCRs such as

mGluR5 and b2 adrenergic receptor are the receptors of

Ab oligomers [62], indicating that GPCR signaling is

involved in the pathogenesis of AD. Indeed, neuromo-

dulation through GPCRs is critical for shaping dendritic

spines and circuits. Mapping of the functional POMC/

MC4R circuit in the mouse hippocampus [50�] suggests

that the activation of postsynaptic MC4R by the presyn-

aptic release of a-MSH is critical for hippocampal synap-

tic plasticity. Ab treatment reduces POMC expression in

acute hippocampal slices, and a-MSH level is decreased

in the hippocampus of APP/PS1 mice, an AD transgenic

mouse model. Together with the finding that a-MSH
www.sciencedirect.com 
level is reduced in the cerebrospinal fluid of AD patients

[63], these findings support the notion that hippocampal

a-MSH–MC4R signaling is disrupted upon AD progres-

sion. Indeed, blockade of hippocampal POMC/MC4R,

particularly removal of POMC cells in the CA3 region,

which secrete a-MSH, causes the early development of

synaptic plasticity impairment in AD transgenic mouse

models [50�]. In contrast, activation of the POMC/MC4R

circuit by exogenous administration of MC4R ligand

reverses the defects in dendritic spine morphology and

impairment of synaptic plasticity in the hippocampus in

APP/PS1 mice. Thus, replenishment of the ligands or

agonists of the candidate postsynaptic receptors may be

an alternative approach for treating AD. Indeed, systemic

administration of MC4R agonists into AD mouse models

has been reported to exert beneficial effects in certain

learning and memory tasks [64,65].

Conclusion and perspective
Structural synaptic plasticity in the hippocampus is func-

tionally implicated in learning and memory. In this

review, we discussed how multiple cell-surface receptors

transduce extracellular signals to affect intracellular actin

dynamics through the coordinated regulation of Rho

GTPases during synaptic potentiation. Different cell-

surface receptors may act on a single subfamily of Rho

GTPases, or a single receptor may trigger the activation of

multiple Rho GTPases. Understanding the precise spa-

tiotemporal dynamics and coordination of receptor–Rho

GTPase signaling will further elucidate how these recep-

tors function in synaptic plasticity. Such knowledge may

help to identify molecular targets for developing thera-

peutic strategies for AD.
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